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Investigation of the elastic properties of a 
solid from the viewpoint of interatomic po- 
tential energy functions is important in the 
sense that it leads one to a better under- 
standing of the nature of interactions be- 
tween atoms of the solid. 

Recently (1) we developed a simple theo- 
retical model for calculation of the modulus 
of elasticity of polycrystalline simple 
metals using the inverse power type poten- 
tial energy function. This model, which in- 
corporates only the nearest neighbor inter- 
actions, yields results that are in good 
agreement with the experimental data in 
most cases. In this work we repeat the cal- 
culations using the Morse potential energy 
function (2) in order to compare the results 
with the previous work and to discuss the 
applicability of each potential. 

The Morse potential function is given by 

~o(r) = D o [ e  -2cdr-rO) - 2e-C~(r-ro)], (1) 
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in which Do and r0 are the dissociation en- 
ergy and the equilibrium interatomic dis- 
tance, respectively, a is a constant with the 
dimension of reciprocal length. The values of 
Do, r0, and a have been determined by Giri- 
falco and Weizer (3) for several cubic 
metals. According to this potential energy 
function; the force required to hold two at- 
oms at a distance r from each other is given 
by 

= - 2 t y . O o [ e - 2 , ~ ( r - r o )  - -  e-,~¢r-~o)] 
= - - 2 R O o [ e - 2 a r o ( a r / r o )  - -  e - o ~ r o ( a r / r o ) ] ,  (2) 

where Ar = r - r0. For an infinitesimal state 
of stress we have At~to ~ 1. Since the quan- 
tity aro is of the order of 3 to 5 for most 
simple metals (3), therefore, we may ex- 
pand the exponential terms of Eq. (2) into 
power series and neglect terms higher than 
the first-order term. This gives 
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TABLE I 

THEORETICALLY CALCULATED AND THE 
EXPERIMENTAL VALUES OF THE MODULUS OF 

ELASTICITY OF POLYCRYSTALLINE SIMPLE CUBIC 
METALS IN UNITS OF 10 m N m  -2 

E(theory) 

Morse Inverse power type 
Metal potential potential E(expt) 

Pb 3.49 3.66 1.57 
Ag 8.23 8.31 8.06 
Ni 15.31 17.15 19.33 
Cu 10.84 12.65 12.36 
A1 6.77 8.72 7.10 
Ca 1.29 1.55 1.96 
Sr 0.93 1.11 1.36 
Mo 33.08 32.07 32.77 
W 38.25 43.56 39.73 
Cr 24.55 27.15 24.33 
Fe 20.31 23.71 20.99 
Ba 1.11 1.55 1.27 
K 0.31 0.34 0.35 
Na 0.64 0.78 0.89 
Cs 0.16 0.19 0.18 
Rb 0.20 0.26 0.27 

f = 2a2Doro ~ . (3) 

In a polycrystalline metal, the line of action 
of the force f is randomly oriented, making 
an angle between 0 and zr/2 with the direc- 
tion of stress. The mean component of f i n  
this direction is, therefore, given by (1) 

J~s = f c o s  0 

= f ( 2 )  = __4 a2D0r0 (A_~0 r) , 7r (4) 

where 0 is the angle between the line of 
action o f f  and the direction of stress. Since 
the average number of atoms per unit cross- 
sectional area of the metal is (d/m) 2/3 where 
d is the density and M is the atomic mass, 
therefore, stress will be given by 

4 ( A r ~ ( d ]  2/3 
S = - -  o t 2 D o r o  (5) 

7r \ ro / \ M /  " 

Strain, e, on the other hand, is given by At/ 
ro regardless of the direction of the line con- 
necting the centers of the two atoms (1). 
Therefore, the modulus of elasticity, E, is 
given by 

4 
= _ ol2Doro 

e 7T 
(6) 

The dissociation energy is related to the co- 
hesive energy, A//~, the coordination num- 
ber, W, and the Avogadro's number, N, ac- 
cording to (4) 

2A/-/~ 
Do = N W "  (7) 

Furthermore, we note that for fcc lattices 

r0(fcc) = 21'6 (M~1'3 \ d / (8) 

and for bcc lattices 

( M )  1/3 
r0 (bcc  ) = 31/6 (~)1/3 (9) 

Thus, we obtain 

 2ams (d)1,3 
e = c \ M :  ' (10) 

where C = 2.8583 and 2.7785 for fcc and 
bcc lattices, respectively. 

The moduli of elasticity of 16 simple cu- 
bic metals are calculated from Eq. (10) and 
listed in Table I along with the experimental 
values (5) and those obtained from the in- 
verse power type potential energy function 
(1). The parameters needed for calculations 
have been taken from the following 
sources: A/~ from Gschneidner (5), d and 
M from the American Institute of Physics 
Handbook (6), and ~ from Girifalco and 
Weizer (3). The results indicate that the 
moduli of elasticity obtained from the 
Morse potential energy function are also in 
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good agreement with the experimental data 
and the degree of agreement is the same for 
both potentials. Both, the inverse power 
type and the Morse potential energy func- 
tions, are equally well applicable in this the- 
ory. 

Clearly, the above model is not the only 
one which leads to a theoretical calculation 
of an elastic modulus in terms of inter- 
atomic potential energy parameters. How- 
ever, the significance of the present model 
lies in its simplicity. 
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